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We implement an effective operator formalism for general one- and two-body operators, obtaining
results consistent with the no-core shell model (NCSM) wave functions. The Argonne V8’ nucleon-
nucleon potential was used in order to obtain realistic wave functions for 4He, 6Li and 12C. In the
NCSM formalism, we compute electromagnetic properties using the two-body cluster approximation
for the effective operators and obtain results which are sensitive to the range of the bare operator.
To illuminate the dependence on the range, we employ a Gaussian two-body operator of variable
range, finding weak renormalization of long range operators (e.g., quadrupole) in a fixed model
space. This is understood in terms of the two-body cluster approximation which accounts mainly
for short-range correlations. Consequently, short range operators, such as the relative kinetic energy,
will be well renormalized in the two-body cluster approximation.

PACS numbers: 21.60.Cs, 23.20.-g, 23.20.Js

I. INTRODUCTION

The no-core shell model (NCSM) is a successful ab ini-

tio method used to compute properties of light nuclei,
starting from realistic two- and three- nucleon interac-
tions. In this approach, all nucleons are active, but the
Hilbert space available is a finite model space. In or-
der to take into account the effect of the configurations
outside the model space, we employ effective interactions
obtained by means of an unitary transformation [1–3],
aimed to reproduce the low-lying spectra in our finite
model space. Large basis NCSM calculations have been
successful in the description of energy spectra in light nu-
clei [4–6]. However, the E2 transition strengths, powerful
tests of the theoretical wave functions, are usually under-
estimated [4, 6]. To date, they were obtained with the
bare operators, and one expects that a renormalization in
the same fashion as for the interaction will give a better
description. The only such effective operators computed
so far have been the effective point-proton radius [6], rela-
tive kinetic energy [7], and the nucleon-nucleon (NN) pair
density [7, 8]. An earlier application to electromagnetic
operators was in a restricted model, where the effective
quadrupole charges have been shown to have the values
expected in a single harmonic oscillator shell, while the
effective two-body contributions were found to be small
[9].

The purpose of this paper is to present the formalism
for general one- and two-body effective operators consis-
tent with the effective interactions of the ab initio NCSM.
Section II details this approach, particularly with regard
to the treatment of states outside the model space. In
Sec. III we apply the formalism to different one- and two-
body operators. The renormalization is found to depend

upon the range of the operator, weak for the E2 opera-
tor, and strong for the relative kinetic energy. Because
the two-body cluster approximation used in this work
integrates out mainly the short-range part of the inter-
action, short-range operators, such as the relative kinetic
energy, are strongly renormalized, while long-range op-
erators, e.g., quadrupole, are weakly renormalized. By
using a Gaussian two-body operator of variable range,
we show how much the renormalization depends on the
range of the operator. We present our conclusions in Sec.
IV.

II. THEORETICAL OVERVIEW

We start with a system of A particles, interacting
through the intrinsic Hamiltonian

HA =
1

A

∑

i>j

(~pi − ~pj)
2

2m
+

∑

i>j

V NN
ij , (1)

where m is the nucleon mass, and V NN
ij the bare NN

interaction, such as the Argonne potentials in coordinate
space [10] or the non-local CD-Bonn [11]. While realistic
three-body forces have been shown to be important in
obtaining the nuclear spectra [12–14] and in describing
electromagnetic and weak form factors [15], we consider
only two-body interactions for simplicity.

The intrinsic properties of the system are not affected
by the addition of the CM harmonic oscillator (HO)
Hamiltonian, but by casting the new Hamiltonian in the
form
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]

=

A
∑

i=1

hi +

A
∑

i>j=1

vij , (2)

and applying the unitary transformation on the new
Hamiltonian, we improve the rate of convergence of the
solution of the A-body problem in smaller model spaces.
As we subtract the CM term in the final many-body cal-
culation, it does not introduce any net influence on the
converged intrinsic properties of the many-body calcu-
lation. Furthermore, this addition and subtraction does
not affect our exact treatment of the CM motion. This
procedure introduces a pseudo-dependence upon the HO
frequency Ω, and the two-body cluster approximation de-
scribed below will sense this dependence. In the largest
model spaces, however, important observables manifest
a considerable independence of the frequency Ω and the
model space limit.

A transformation, which accommodates the short
range correlations by means of an antihermitian operator
[1–3], produces an effective Hamiltonian H given by

H = e−SHΩ
AeS . (3)

Note that even if the original Hamiltonian contained just
one- and two-body terms, the operator S and the trans-
formed Hamiltonian H contain up to A-body terms. Ob-
taining the exact operator S is equivalent to solving the
initial problem, which would make the transformation
impractical. We will discuss below, in some detail, ap-
proximations which allow us to solve the A-body system;
for now, the derivation is exact.

The purpose of transformation (3) is to preserve the
solutions of the original Hamiltonian when one reduces
the infinite dimension of the Hilbert space to a finite
value which is numerically tractable. We achieve this by
splitting the full space associated with the A-body system
into P , or model space, and Q, the excluded space; the
decoupling condition

QHP = 0, (4)

in addition to the requirements PSP = QSQ = 0 [3], en-
sure that correlations left out by restriction to the model
space P are properly taken into account for a subset of
the exact eigenstates. Formally, the operator S can be
written [3] by means of another operator ω as

S = arctanh(ω − ω†), (5)

where the new operator fulfills QωP = ω. The energy-
independent effective Hamiltonian in the model space P
becomes

Heff = PHP =
P + Pω†Q√

P + ω†ω
HΩ

A

P + QωP√
P + ω†ω

, (6)

and, analogously, any arbitrary observable can be trans-
formed to the P space as [1, 16]

Oeff = POP =
P + Pω†Q√

P + ω†ω
O

P + QωP√
P + ω†ω

. (7)

In order to compute effective operators one needs to
know ω. This operator connects eigenvectors in P to
vectors in the Q space. A simple way to compute ω is [6]

〈αQ|ω|αP 〉 =
∑

k∈K

〈αQ|k〉〈k̃|αP 〉, (8)

with |αP 〉 and |αQ〉 the basis states of the P and Q spaces,
respectively; |k〉 denotes states from a selected set K of
eigenvectors of the Hamiltonian in the full space HΩ

A |k〉 =

Ek|k〉, and 〈αP |k̃〉 is the matrix element of the inverse

overlap matrix 〈αP |k〉, that is
∑

αP
〈k′|αP 〉〈αP |k̃〉 = δkk′ .

Note that the dimension of the subspace K is equal with
the dimension of the model space P .

As noted before and seen explicitly in Eq. (8), in or-
der to solve for ω one needs the solution of the A-body
problem, i.e., the eigenvectors |k〉, which is the final goal.
Therefore, we introduce the cluster approximation. This
consists in finding ω for the a-body problem, a < A, and
then using the effective interaction thus obtained for solv-
ing the A-body system. This approximation introduces
a real dependence of the oscillator parameter Ω, and the
solution to this problem is to search for a range of Ω val-
ues over which the results are weakly Ω dependent. There
are two limiting cases of the cluster approximation: first,
when a → A, the solution becomes exact; a higher-order
cluster is a better approximation and was shown to in-
crease the rate of convergence [12]. Second, when P → 1,
the effective interaction approaches the bare interaction;
as a result, the cluster approximation effects can be min-
imized by increasing as much as possible the size of the
model-space size.

In this work, we present results obtained at the two-
body cluster level. Under this approximation, the trans-
formation writes as

S ≈
A

∑

i>j=1

Sij , (9)

with Sij = arctanh(ωij − ω†
ij). Applying the operator

identity

e−SOeS = O + [O,S] +
1

2!
[[O,S], S] + ... (10)
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to transform a general one-body operator O(1) =
∑A

i=1 Oi, one obtains

O(1) = O(1)+
A

∑

i>j=1

[Oi+Oj , Sij ]+
A

∑

i>j

[[Oi+Oj , Sij ], Sij ]+...,

(11)
where we have retained only the one- and two-body
terms, neglecting higher body contributions, such as
[Oi, Sjk], with i 6= j and i 6= k. Resummation of the
commutators yields

POeffP = P
∑

i

OiP

+P

A
∑

i>j=1

[

e−Sij (Oi + Oj) eSij − (Oi + Oj)
]

P.(12)

Analogously, for a general two-body operator

POeffP = P

A
∑

i>j=1

e−Sij Oije
Sij P, (13)

and, in particular, the effective Hamiltonian derived from
Eq. (2) is given by

PHeffP = P

A
∑

i=1

hiP

+P

A
∑

i>j=1

[

e−Sij (hi + hj + vij) eSij − hi − hj

]

P.(14)

We emphasize that in the two-body cluster approxima-
tion the explicit decoupling condition in Eq. (4) is ful-
filled for the two-body problem now:

Q2H(2)P2 = Q2e
−S12(h1 + h2 + v12)e

S12P2 = 0,

where P2, Q2 refer to the corresponding projection op-
erators for the two-particle system. Condition (4) is, in
general, violated for the A-body problem, but the errors
become smaller with increasing the model space. The
dependence upon A due to the addition of the CM term
in Eq. (2) is kept in v12.

Finally, note that even if initially one starts with an
one-body operator, in the two-body cluster approxima-
tion, the effective operator will generally have irreducible
two-body matrix elements.

III. RESULTS AND DISCUSSION

For details regarding the procedure to obtain the ef-
fective interaction for a system of A nucleons in the
two-body cluster approximation, we refer the interested
reader to previous work, e.g., Ref. [6]. We note that in
this paper the effective interaction and the transforma-
tion ω are obtained in the relative system of two particles,
in a large HO basis. The Q space is chosen to be a few
hundred h̄Ω excitations in order to obtain an exact solu-
tion to the two-body Schrödinger equation. Due to the
rotational symmetry, we formulate the problem in two-
nucleon channels with good total spin s, total angular
momentum j, and isospin t, reducing drastically the di-
mensions involved, when performing the summation over
the states in the Q space in Eq. (6) The same proce-
dure can be applied to operators which can be analyti-
cally expressed in terms of relative and CM coordinates
of pairs. Therefore, we develop a convergence procedure
which works for general one- and two-body operators.

As shown in the previous section, the corrections to
general operators are given by Eq. (12) for one-body op-
erators, and Eq. (13) for two-body operators. Suppose
the operators are given in the single-particle representa-
tion, so that in order to compute contributions of the
form exp(−Sij)(Oi + Oj) exp(Sij) for one-body opera-
tors [and correspondingly exp(−Sij)Oij exp(Sij) for two-
body operators] by means of Eq. (7), one needs to trans-
form either the operator to the relative system or the
transformation ω to single-particle representation. The
two procedures, however, give the same result, and the
numerical burden is likely comparable.

Going back to Eq. (7), note that in the computation
of effective operators, the number of two-body matrix el-
ements involved in the summation over the Q states be-
comes numerically intractable in the single-particle repre-
sentation. For example, in terms of the matrix elements
in the relative coordinates, the transformation ω in the
single-particle picture is given by
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〈n1l1j1, n2l2j2;Jt|ω|n3l3j3, n4l4j4;Jt〉 =

= 2
1

√

1 + δn1n2
δl1l2δj1j2

1
√

1 + δn3n4
δl3l4δj3j4

∑

s,Λ,Λ′





l1 l2 Λ
1
2

1
2 s

j1 j2 J









l3 l4 Λ′

1
2

1
2 s

j3 j4 J





×
∑

nl

n′l′

∑

NL

〈n′l′, NL; Λ′|n1l1, n2l2; Λ
′〉〈nl,NL; Λ|n3l3, n4l4; Λ〉

×
∑

j

U(jLsΛ′;Jl′)U(jLsΛ;Jl)〈n′l′s(j)t|ω|nls(j)t〉, (15)

where |n1l1j1, n2l2j2;Jt〉 refer to two-body states in the
Q2 space, and |n3l3j3, n4l4j4;Jt〉 refer to two-body states
in the P2 space. We have employed the same notations
as in Ref. [17] for the Talmi-Moshinsky transformation.

Analyzing Eq. (15), we note that the quantum num-
bers for the CM states are restricted by the model space,
2N + L ≤ NP , with NP fixed by the size of the model
space. The relative (n, l) states are restricted by the
model space so that 2n + l ≤ NP . Using the en-
ergy conservation in the Brody-Moshinsky brackets, one
also obtains a restriction for the single-particles states,
2n3 + l3 +2n4 + l4 ≤ NP . However, the states (n′, l′) run
over the excluded space and, since 2n1 + l1 + 2n2 + l2 is
not restricted by the model space, the number of possible
pairs becomes numerically intractable. Hence, we restrict
the relative states in the excluded space by the condition
NP ≤ 2n′+l′ ≤ NQ, and observe convergence by increas-
ing NQ. (To give the reader an idea about the dimensions
involved, we note that for NQ = 28 for a p-shell nucleus,
the number of ω matrix elements, taking into account
the possible symmetries, in a 2h̄Ω model space defined
by NP = 4, is 413,163; subsequently, the number of re-
duced matrix elements involved in the transformation of
a tensor operator with J = 1, T = 1 is 7,216,180.) This
procedure was successfully tested for the deuteron in a
restricted space, where we have shown that, for general
tensor operators, the matrix elements obtained with ef-
fective operators approach the values obtained with bare
operators in the full space [19].

We present in Fig. 1 the 2h̄Ω model space results for
B(E2; 2+

1 0 → 0+
1 0) in 12C and B(M1; 1+

1 0 → 0+
1 0) in 6Li.

The shell model calculations have been performed using
the many-fermion dynamics code [18]. Following the pro-
cedure described above, we compute the effective oper-
ator by means of Eq. (12) by adding from the Q space
two-body matrix elements (2n′+l′) ≤ NQ, and increasing
NQ. Note that for E2 transitions we expect the biggest
contribution to come from 4h̄Ω, as the E2 operator con-
nects across two shells. Figure 1 shows, however, that
B(E2; 2+

1 0 → 0+
1 0) remains essentially flat, at the same

value as the one obtained with the bare operator, and at
about half the experimental strength. For the M1, we
observe a small correction in the transition strength, al-
beit the correction is slightly larger than the discrepancy
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FIG. 1: (Color online) 2h̄Ω model space results for B(E2)
in 12C and B(M1) in 6Li using effective interaction derived
from AV8’ potential. We show the results as a function of the
dimension of the Q-space included. For comparison, we in-
cluded the values obtained using the bare operators (squares)
and the experimental values (diamonds). The dashed lines
represent an interpolation of the strengths obtained with ef-
fective operators.

between theory and experiment. For other M1 transi-
tions, however, we observe, in general, the same minimal
effect as for quadrupole transitions. Such a small cor-
rection can be more easily understood, as M1 does not
connect the model space with the complementary one; in-
creasing the model space introduces enough correlations
in the wave function so that using the bare operator gives
B(M1) values close to experiment.

One can ask the question whether the convergence pro-
cedure is faulty and if including all the states in the ex-
cluded space in calculations would not improve the E2
transition strengths. Because, in general, the electric
multipoles can be written as sum of terms which fac-
torize the CM and relative contributions for each pair of
nucleons, we can include all the states in the Q-space. In
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TABLE I: B(E2) values, in e2 fm4, for 6Li computed with
bare and effective operators in a 2h̄Ω model space (h̄Ω = 13
MeV). All states in the Q space are included (see text for
details). For comparison we have included also B(E2) values
obtained in 10h̄Ω space with the bare quadrupole operator
[4]. Experimental values are from Ref. [20].

2h̄Ω 10h̄Ω Expt.

Bare Effective Bare

1+0 → 3+0 2.647 2.784 10.221 21.8(4.8)

2+0 → 1+0 2.183 2.269 4.502 4.41(2.27)

1+

2 0 → 1+0 3.183 3.218

the Appendix, we identify the CM and relative contribu-
tions for each pair to the E2 operator. In this context,
we further show that the difference between the usual E2
operator used in shell model calculations, and the trans-
lationally invariant one is a term which involves only con-
tributions from the CM of the A-body system. The lat-
ter is irrelevant when employing translationally invariant
wave functions or many-body wave functions which fac-
torizes exactly in intrinsic and a 0h̄Ω CM contributions,
as in our case.

In Table I, we present the B(E2) values for quadrupole
transitions in a 2h̄Ω model space in 6Li, and compare
them with the experimental strengths, where available.
In these calculations we include in the summation all the
states in the Q space. Because, as noted before, we limit
ourselves to small model spaces, the transition strength
obtained with bare operators are far from the experi-
mental values; increasing the model space up to 10h̄Ω
reduces the discrepancy between theory and experiment,
although not enough [4]. Relevant for the current in-
vestigation, Table I shows very little difference between
the transition strengths obtained with bare and effec-
tive operators. In contrast, for the deuteron, where the
two-body cluster provides the exact solution, the bare
quadrupole operator in 4h̄Ω gives 0.179 e fm2 for the
quadrupole moment, while the value of 0.270 e fm2, de-
scribed by the AV8’ potential, is obtained using the cor-
responding effective operator.

Another way to test whether the convergence proce-
dure works is to consider a two-body operator which de-
pends only upon the relative coordinates, which can be
renormalized similarly to the Hamiltonian. One such op-
erator is the relative kinetic energy, whose effective ma-
trix elements can be computed by simply replacing in the
effective interaction code the bare Hamiltonian with the
bare kinetic energy after the transformation ω has been
determined. The results summarized in Fig. 2 show that
the expectation value computed with the approximate
effective operator converges toward the exact effective
value. While the convergence rate might look slow, we
would like to point out that even for small values of NQ

we obtain reasonable renormalization comparing to the
full space renormalization, in contrast to the interaction,
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140

4
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16h̄Ω

〈0
|T

r
e
l|0
〉[

M
eV

]

NQ

“exact”

FIG. 2: (Color online) The expectation value of the relative
kinetic energy on the ground state using realistic wave func-
tions for 4He in different model spaces. We show how the
ground state expectation value changes when one increases
the number of states in the Q-space (circles). For comparison,
we include the results obtained with bare operator (squares)
and including all states in the excluded space (diamonds), or
what we call the “exact” effective operator.

where several hundred h̄Ω excitations are usually nec-
essary. Note that larger model spaces require less renor-
malization with respect to the bare operator, as expected.
Also, the effective expectation values are similar to pre-
vious results [7], although the latter have been obtained
with wave functions computed in the three-body cluster
approximation in 16h̄Ω. This can be explained by the
character of the kinetic energy operator which is zero
range, so that it is well renormalized at the two-body
cluster level.

Because the two-body cluster approximation accom-
modates the short range correlations, one can expect that
such an approach might not be well-suited to renormal-
ize the E2 operator, which is infinite range. To illustrate
the importance of the range of the operator for renor-
malization at the two-body cluster level, we consider a
Gaussian two-body operator of range a0

O(~r1, ~r2) = C0 exp

(

− (~r1 − ~r2)
2

a2
0

)

, (16)

with C0 chosen so that

C0

∫

d~r exp

(

− r2

a2
0

)

= 1.

While this is not a realistic observable, one can often
expand realistic operators as sums of Gaussians, so this
could be used to estimate the renormalization of differ-
ent contributions. However, in this paper, the only pur-
pose of this example is to illustrate the dependence of
the renormalization upon the range of the operator. We
define the renormalization as (〈Oeff 〉−〈Obare〉)/〈Obare〉,
and in Fig. 3 we summarize the results using the realis-
tic ground-state wave function for 4He. At small ranges,
the expectation value computed with the effective oper-
ator is significantly different from the one obtained using
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FIG. 3: (Color online) Renormalization of the ground state
expectation value of the relative Gaussian operator using re-
alistic wave functions for 4He, as a function of the range of
the operator for 4h̄Ω (circles), 6h̄Ω (squares), and 8h̄Ω (dia-
monds). All the states in the Q-space are included.

the bare operator. However, when the operator becomes
longer range, the renormalized value becomes nearly in-
distinguishable from the bare value. While we do not ex-
pect realistic operators to behave exactly as the Gaussian
operator used here, we believe that this example offers a
qualitative understanding of the very weak renormaliza-
tion of the quadrupole operator.

IV. SUMMARY AND CONCLUSIONS

We have computed the effective operators consistent
with the ab initio NCSM effective interactions. In the
present investigation we limit ourselves to solutions ob-
tained in the two-body cluster approximation. The main
purpose of this paper was a qualitative investigation of
the effective operators rather than a highly accurate de-
scription of the experimental data; this is the reason we
have considered limited shell model spaces for 4He, 6Li
and 12C nuclei.

For general operators one cannot apply the same cal-
culational procedure as for the Hamiltonian; for these
we have developed a convergence procedure in which we
add correlations from the excluded space a few shells at
a time. This procedure can be applied to arbitrary one-
and two-body operators. We have tested this procedure
in the case of the relative kinetic energy, where we ob-
tained slow convergence as the number of Q-states in-
cluded in the renormalization is increased.

We found that the quadrupole operator is very weakly
renormalized at the two-body cluster level. We suggest
that this is a consequence of the character of multipole
operators which have infinite range. To substantiate this
hypothesis, we have shown, using a Gaussian operator
that the renormalized operator is quite sensitive to the
range of the operator. Thus, the shorter the range, the
stronger the renormalization, with only a small effect for
long range operators. Therefore, in order to describe long
range operators one needs to go beyond the two-body

cluster approximation. As a general caveat, any trun-
cation of the space could induce effective operators with
non-negligible higher-body correlations. This result is in
accord with previous findings of tests in restricted models
for the double-β decay operator [21]. It should be noted
that earlier calculations for 6Li, which obtained signif-
icant effective quadrupole charge renormalization, were
based on large-basis NCSM calculations, which were then
explicitly truncated into a 0h̄Ω space and fitted to one-
plus-two-body quadrupole operators [9]. By construc-
tion these calculations contained all correlations up to
six-body due to the truncation and, hence, yielded the
large effective charge renormalizations that are found ex-
perimentally. Techniques for including these high-body
correlations in our calculations are under investigation.

Nevertheless, even at the two-body cluster level, there
are cases where the renormalization is significant, as we
have shown for the relative kinetic energy. Future work
will investigate electromagnetic processes, where one ex-
pects the two-body cluster renormalization to play an
important role at large momentum transfer.

Acknowledgments

I.S. and B.R.B acknowledge partial support by NFS
grants PHY0070858 and PHY0244389. The work was
performed in part under the auspices of the U. S.
Department of Energy by the University of California,
Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. P.N. received support from LDRD
contract 04-ERD-058. J.P.V. acknowledges partial
support by USDOE grant No DE-FG-02-87ER-40371.

APPENDIX: THE TRANSLATIONALLY

INVARIANT QUADRUPOLE OPERATOR

In this Appendix we revisit the quadrupole operator,
identifying the intrinsic and CM contributions.

We start by rewriting the single-particle isoscalar
quadrupole operator in a two-body form, that is

E2 =
∑

i

O(~ri) =
1

A − 1

A
∑

i>j=1

(O(~ri) + O(~rj)) , (A.1)

where O(~ri) = eISr2
i Y2(r̂i), with Y2 the spherical har-

monics of rank 2 and eIS the isoscalar charge. For a pair
of particles (i, j) we define the relative ~rij = ~ri − ~rj and

the CM ~Rij = (~ri +~rj)/2 coordinates. Using Eq. (35) in
Ref. [22], one can show that

O(~ri) + O(~rj) =
1

2
O(~rij) + 2O(~Rij). (A.2)

This separates for a pair of particles the relative and
CM contributions to the quadrupole operator. The Lee-



7

Suzuki transformation affects only the relative coordi-
nates, so that in this form one can apply a similar pro-
cedure as for the renormalization of the Hamiltonian.
Note, however, that because the quadrupole operator is
a tensor operator of rank 2, it can couple different chan-
nels with different total angular momentum j, unlike the
Hamiltonian. Hence, the renormalization procedure for
the E2 multipole is more involved than for the Hamil-
tonian.

We can show in general that any electric multipole op-
erator can be written in a form that allows similar renor-

malization as for the Hamiltonian. Thus, consider the
identities:

exp(i ~q · ~ri) = exp(i ~q · ~rij/2) exp(i ~q · ~Rij) (A.3a)

exp(i ~q · ~rj) = exp(−i ~q · ~rij/2) exp(i ~q · ~Rij). (A.3b)

Using the usual expansion of the exponentials in spherical
Bessel functions and spherical harmonics, one can show
that

iL(jL(qri)YL(r̂i) + jL(qrj)YL(r̂j)) =

√
4π

∑

ll′

√

(2l + 1)(2l′ + 1)

2L + 1
il+l′(1 + (−1)l)〈l0, l′0|L0〉jl(qrij/2)jl′(qRij)[Yl(r̂ij) ⊗ Yl′(R̂ij)]L. (A.4)

In the limit of zero momentum transfer, we indeed find that the electric multipoles can be written as sum of terms
which factorize the relative and CM contributions of nucleon pairs. In particular, for L = 2, we regain Eq. (A.2).

An important issue in shell model calculations is separation of intrinsic and CM excitations. Although our wave
functions factorize exactly in intrinsic and CM contributions, one might pick up spurious contributions if one does
not use translationally invariant operators. In the following, we concentrate on the quadrupole operator. Because
the last term in Eq. (A.2) cannot be summed in a part involving only the A-body CM, one might expect that the
CM can introduce spurious contributions. We point out, however, that the CM of individual pairs can be changed
without changing the CM of the A-body system. Furthermore, we can show that there is no contribution from the
A-body CM. Thus, we start with the translationally invariant expression of the quadrupole operator

E2 =
∑

i

O(~ri − ~RCM ), (A.5)

so that Eq. (A.2) becomes

O(~ri − ~RCM ) + O(~rj − ~RCM ) =
1

2
O(~rij) + 2O(~Rij − ~RCM ). (A.6)

This can be further transformed by means of Eq. (35) in Ref. [22]:

O(~ri − ~RCM ) + O(~rj − ~RCM ) =

1

2
O(~rij) + 2O(~Rij) + 2O(~RCM ) −

√
4π5!

3
[RijY1(R̂ij) ⊗ RCMY1(R̂CM )]2. (A.7)

Because ~Rij = RijY1(R̂ij) one can sum contributions from all pairs (i, j), so that Eq. (A.7) becomes:

∑

i

O(~ri − ~RCM ) =
∑

i

O(~ri) + R2
CMY2(R̂CM ) −

√
4π5!

3
A(A − 1)R2

CM [Y1(R̂CM ) ⊗ Y1(R̂CM )]2. (A.8)

Therefore, when computing E2 transition strengths
with wave functions which factorize the intrinsic and
0h̄Ω CM pieces, there are no spurious contributions even
though the operator usually employed, Eq. (A.1), is

not translationally invariant. The latter differs from its
translationally invariant form by a term which contains
only an irrelevant tensor contribution from the CM of the
A-body system.
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[15] A. C. Hayes, P. Navrátil, and J. P. Vary, Phys. Rev. Lett.
91, 012502 (2003).
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